Toward Integrating Operation Research and Machine Learning: A Closed-Loop Predict-and-Optimize Framework and Its Application in Power Systems

Xianbang Chen, Ph.D. Candidate, Stevens Institute of Technology, USA Lei Wu, Anson Wood Burchard Chair Professor, Stevens Institute of Technology, USA

Supported by

Introduction

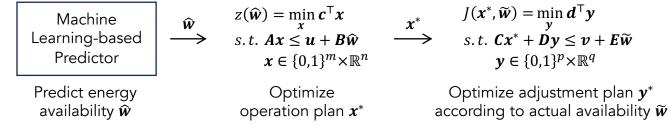
Real-world scheduling is "predict-then-optimize":

- 1) Machine learning predicts uncertainties;
- 2) Given predictions, scheduling plans are optimized.

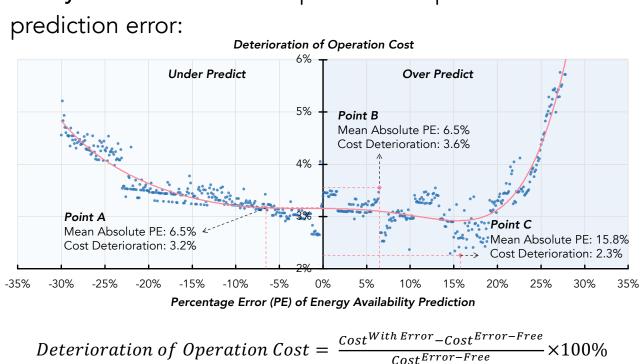
But the prediction ignores its impact on the optimization, making the process opened-loop. So, will it be beneficial to feed the optimization back to the prediction?

Motivation from Power System

Power system operations in the open-loop predict-thenoptimize process:



Asymmetrical relationship between operation cost and



Observation

- Point A vs. Point B: Same error but different costs.
- Point B vs. Point C: Worse error but lower cost.

Real-world systems are nonlinear. We should close the opened-loop between prediction and optimization.

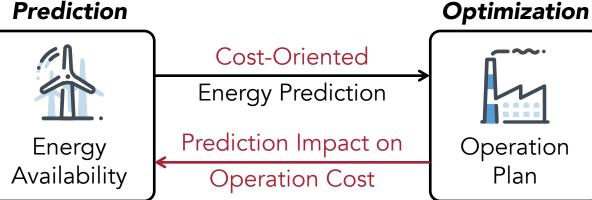
What is Closed-Loop Predict-and-Optimize?

Prediction Optimization Accuracy-Oriented **Energy Prediction** Energy Operation **Availability**

Open-Loop Predict-then-Optimize

- Measure prediction quality with prediction accuracy. (Open-loop and accuracy-oriented)
- Sequentially predict energy and optimize operation. (Predict-then-Optimize)

Prediction



Closed-Loop Predict-and-Optimize

- Measure prediction quality with operation cost. (Closed-loop and cost-oriented)
- Simultaneously predict energy and optimize operation. (Predict-and-Optimize)

■ How to Closed-Loop Predict-and-Optimize?

Data Processing

Select the most relevant feature type to form feature vectors \boldsymbol{f} .

Select S representative scenarios as training scenarios.

Goal: Form the empirical risk minimization problem for training predictor.

Cost-Oriented Predictor Training

Form a bilevel empirical risk minimization (ERM) problem. Then solve it via a cutting-plane method. The solution is an optimally trained predictor $H^*(\cdot)$.

$\min_{\boldsymbol{H}} \frac{1}{S} \sum_{s=1}^{S} \boldsymbol{b}^{T} \boldsymbol{x}_{s} + \boldsymbol{d}^{T} \boldsymbol{y}_{s}$ $s. t. \widehat{\boldsymbol{w}}_{s} = \boldsymbol{H}(\boldsymbol{f}_{s}); \ \forall s$	Upper Level: Given feature f_s , train predictor $H(\cdot)$ with objective of minimum operation cost $b^{T}x_s + d^{T}y_s$.	· , , , , , , , , , , , , , ,
$\mathbf{x}_{s} \in \operatorname{argmin} \mathbf{c}^{\top} \mathbf{x}_{s}; \ \forall s$ $s. t. \ \mathbf{A} \mathbf{x}_{s} \leq \mathbf{u} + \mathbf{B} \widehat{\mathbf{w}}_{s}$	Lower Level: Given prediction \hat{w}_s , optimize operation plan x_s .	Feedback the prediction impact on the operation
$\mathbf{x}_{s} \in \{0,1\}^{m} \times \mathbb{R}^{n}$ $\mathbf{y}_{s} \in \operatorname{argmin} \mathbf{d}^{\top} \mathbf{y}_{s}; \ \forall s$ $s.t. \ \mathbf{C} \mathbf{x}_{s} + \mathbf{D} \mathbf{y}_{s} \leq \mathbf{v} + \mathbf{E} \widetilde{\mathbf{w}}_{s}$	Lower Level: Given plan x_s and actual realization \widetilde{w}_s , optimize adjustment plan y_s .	optimization
$\mathbf{y}_{s} \in \{0,1\}^{p} \times \mathbb{R}^{q}$, , , , ,	

Goal: Solving the ERM problem can provide a predictor $H^*(\cdot)$ that can generate cost-oriented prediction $\widehat{\boldsymbol{w}}$ (feature \boldsymbol{f} as input) for the operations. The cost-oriented prediction $\hat{\boldsymbol{w}}$ is tailored to reduce the operation cost.

Predict and Optimize

Embed the trained predictor $H^*(\cdot)$ into the original operation model to form a prescriptive model:

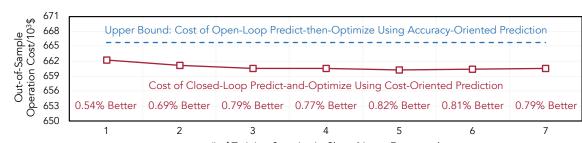
$$z(f) = \min_{x, \widehat{w}} c^{\top} x$$
s. t. $Ax \le u + BH^*(f)$

$$x \in \{0,1\}^m \times \mathbb{R}^n.$$

Now, the operation plan xis driven by feature f.

Goal: Use the prescriptive model to predict and optimize simultaneously.

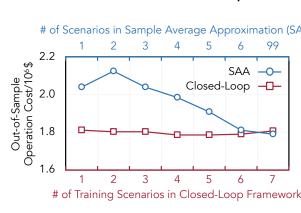
Major Results

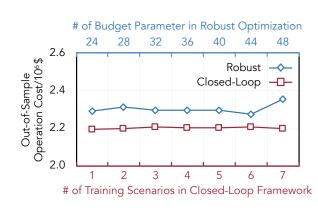


Type of Prediction $\widehat{\pmb{w}}$	Mean Absolute Error (MAE)	Root Mean Square Error (RMSE)
Accuracy-Oriented	15.0MW	21.0MW
Cost-Oriented	16.5MW	23.2MW

Closed-Loop vs. Open-Loop

- Closed-loop reduces operation cost by 0.54%-0.82%. Implication: Closed-loop is economically effective.
- Cost-oriented \hat{w} is worse in MAE and RMSE. **Implication:** A more accurate prediction may not result in a better optimization.





Closed-Loop vs. SAA

• Closed-loop outperforms SAA when scenarios are limited.

• Closed-loop achieves a better operation cost.

Closed-Loop vs. Robust

VI References

[1] X. Chen, Y. Yang, Y. Liu and L. Wu, "Feature-Driven Economic Improvement for Network-Constrained Unit Commitment: A Closed-Loop Predict-and-Optimize Framework," IEEE Transactions on Power Systems, 2022.

[2] X. Chen, Y. Liu and L. Wu, "Towards Improving Operation Economics: A Bilevel MIP-Based Closed-Loop Predict-and-Optimize Framework for Prescribing Unit Commitment," arXiv:2208.13065, 2023.

