

Boosting Power System Operation Economics via Closed-Loop Predict-and-Optimize

Xianbang Chen, Ph.D. Candidate, xchen130@stevens.edu Lei Wu, Anson Wood Burchard Chair Professor, lei.wu@stevens.edu

Stevens Institute of Technology

June 28, 2023

For the 2023 FERC Software Conference

Introduction

Boosting
Power System
Operation Economics
via
Closed-Loop
Predict-and-Optimize
(C-PO)

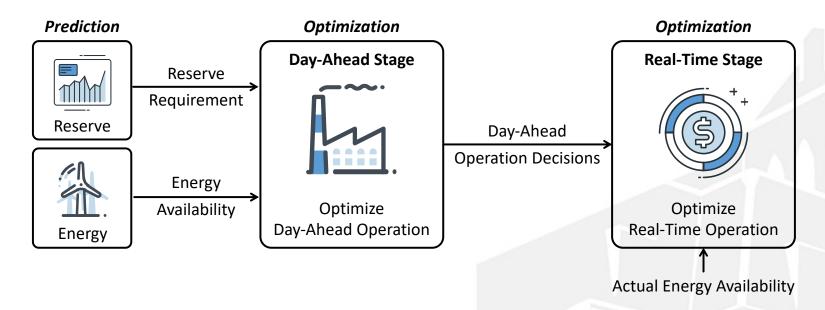
Approach 1: Feature-Driven C-PO

Approach 2: Bilevel C-PO

Summary

Background: Power System Operations in O-PO

• Operations in Open-Loop Predict-then-Optimize (O-PO) Framework



Operators' Goal: Minimum Operation Cost

Background: Power System Operation Models

Day-Ahead Unit Commitment (Mixed-Integer Programming)

$$z(\hat{w}) = \min_{x} c^{T}x$$
 Decision x: On/off state, base-point generation, reserve deployment of units.

$$s.t. \ x \in \mathcal{X}(\widehat{w}, \widehat{r})$$
 \widehat{w} and \widehat{r} are vectors of renewable and reserve predictions. $x \in \{0,1\}^m \times \mathbb{R}^n$

Real-Time Economic Dispatch (Mixed-Integer Programming)

 $z^{ed}(x^*, \widetilde{w}) = \min_{v} d^{\top}y$ Decision y: On/off state of quick-start units, generation adjustment, reserve usage.

s.t.
$$y \in \mathcal{Y}(x^*, \widetilde{w})$$
 \widetilde{w} is vector of actual energy availability. $y \in \{0,1\}^p \times \mathbb{R}^q$

• Evaluate Operation Economics

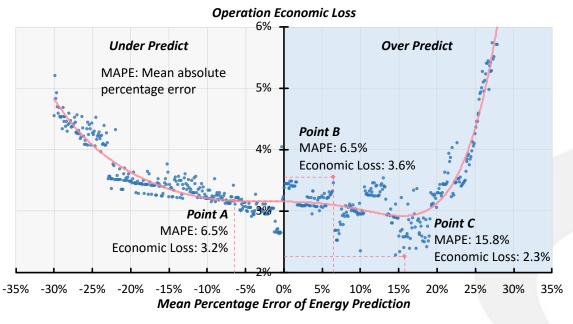
After solving the problems, the actual operation cost is available. A lower operation cost indicates a better operation economics.

Motivations: Flaws in Open-Loop Predict-then-Optimize (O-PO)

- Reserve Requirement is Redundant
- Statistically More Accurate Prediction

 ⇒ Better Operation Economics

Samples with different prediction errors on an IEEE 118-bus system



Point A vs Point B

The same prediction error (MAPE = 6.5%) enable different economic losses (3.2% vs 3.6%).

Point B vs Point C

A worse prediction error (MAPE = 15.8%) enables a lower economic loss (2.3%).

Why?

Power systems are complex and nonlinear.

$$Economic\ Loss = \frac{Operation\ Cost^{With\ Error} - Operation\ Cost^{Error-Free}}{Operation\ Cost^{Error-Free}} \times 100\%$$

Introduction

Motivations: Flaws in Open-Loop Predict-then-Optimize

"In many real-world applications, the **ultimate goal** is not to make good predictions, but rather to use the often noisy predictions to **make good decisions**."

---- Yoshua Bengio

in Using a Financial Training Criterion Rather than a Prediction Criterion, 1997

Boosting
Power System
Operation Economics
via
Closed-Loop
Predict-and-Optimize
(C-PO)

Introduction

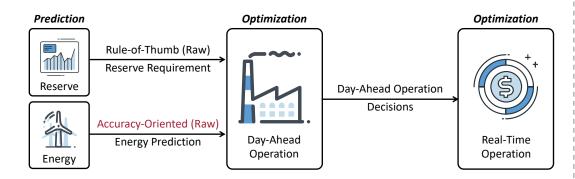
Approach 1: Feature-Driven C-PO

Approach 2: Bilevel C-PO

Summary

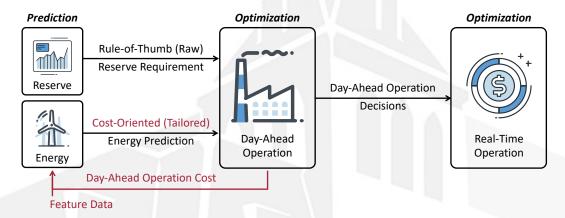
O-PO vs Feature-Driven C-PO

Open-Loop Predict-then-Optimize (O-PO)



- Train predictor with statistical accuracy criterion (Open-loop and accuracy-oriented)
- Sequentially predict and optimize (Predict-then-optimize)

Feature-Driven Closed-Loop Predict-and-Optimize (C-PO)



- Train predictor with operation cost criterion (Closed-loop and cost-oriented)
- Simultaneously predict and optimize (Predict-and-optimize)

Three Modules in Feature-Driven C-PO

- Data-Processing Module
 - Feature selection
 - Training scenario selection
- Cost-Oriented Modeling-and-Training Module 🖘
 - Model a cost-oriented empirical risk minimization problem
 - Solve the problem to get a well-trained predictor
- Closed-Loop Predict-and-Optimize Module
 - Embed the predictor into the unit commitment model
 - Use the new model to predict and optimize simultaneously

Cost-Oriented Modeling-and-Training Module

• Smart "Predict-then-Optimize" (SPO) Loss Function for Training

 $\ell oss^{SPO}(\widehat{w}, \widetilde{w}) \coloneqq |z^*(\widehat{w}) - z^*(\widetilde{w})|$ Gap between imperfect UC cost $z^*(\widehat{w})$ (induced by prediction with error \widehat{w}) and perfect UC cost $z^*(\widetilde{w})$ (induced by error-free prediction \widetilde{w}).

Cost-Oriented Empirical Risk Minimization (ERM) Problem based on SPO

$$\begin{array}{ll} \mathrm{UC} \coloneqq \min_{\boldsymbol{x}} \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} & \mathrm{ERM} \coloneqq \min_{\boldsymbol{x},\boldsymbol{H}} \frac{1}{k} \sum_{k=1}^{K} \ell oss_{k}^{SPO}(\boldsymbol{\hat{w}}_{k}, \boldsymbol{\tilde{w}}_{k}) \text{ Minimize in-sample SPO loss} \\ s.\,t.\,\, \boldsymbol{x} \in \mathcal{X}(\boldsymbol{\hat{w}}, \boldsymbol{\hat{r}}) & \Leftrightarrow \quad s.\,t.\,\, \boldsymbol{x}_{k} \in \mathcal{X}(\boldsymbol{Hf}_{k}, \boldsymbol{\hat{r}}); \, k = 1, \ldots, K. \quad \boldsymbol{f}_{k} \text{ is the feature vector of sceanrio } k \\ & \mathbb{Q} \end{array}$$

Essence: A linear regression problem.

Intractability: All training scenarios are coupled by predictor matrix H.

• Handle the Intractability

Lagrangian decomposition to enable parallel computation.

• After Solving the Empirical Risk Minimization Problem

Get a trained cost-oriented predictor H^* tailored for operations, then embed it into UC to form a prescriptive UC.

Original Unit Commitment vs Prescriptive Unit Commitment

Original Unit Commitment Model

$$z(\widehat{\boldsymbol{w}}) = \min_{\boldsymbol{x}} \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x}$$
s.t. $\boldsymbol{x} \in \mathcal{X}(\widehat{\boldsymbol{w}}, \widehat{\boldsymbol{r}})$

$$\boldsymbol{x} \in \{0,1\}^m \times \mathbb{R}^n$$

- Predict-then-optimize
- Accuracy-oriented prediction

Prescriptive Unit Commitment Model

$$z(\mathbf{f}) = \min_{\mathbf{x}, \hat{\mathbf{w}}} \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
s.t. $\mathbf{x} \in \mathcal{X}(\mathbf{H}^{\star} \mathbf{f}, \hat{\mathbf{r}})$

$$\mathbf{x} \in \{0,1\}^{m} \times \mathbb{R}^{n}$$

- Predict-and-optimize (i.e., prescription)
- Cost-oriented prediction driven by feature f

Why is prescription?

Description

What does the data look like?

Prediction

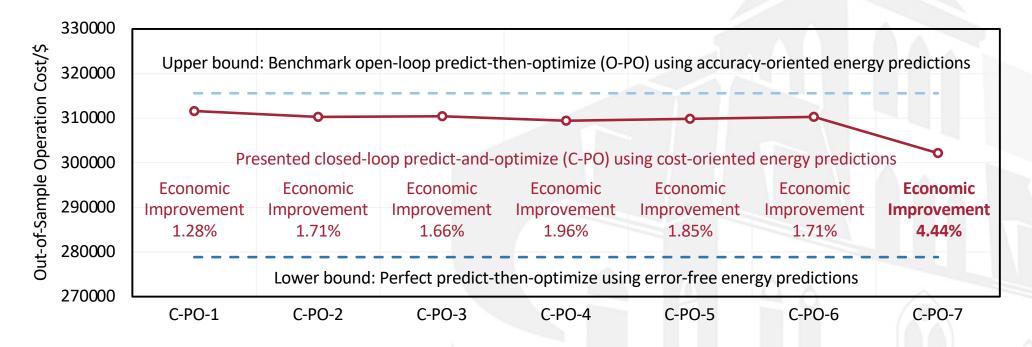
What will the data look like?

Prescription

What decisions should be made from the data?

Case on Median-Size System: Operation Economics

- Benchmark: Predictions (Accuracy-Oriented) from a Belgian ISO
- One-Year-Long Dataset for Out-of-Sample Testing (01/01/2020 to 12/31/2020)
- 7 C-POs with Different Configurations



Case on Median-Size System: Prediction Accuracy

• Interesting Observations on Cost-Oriented Predictions

- Less accurate from a statistical perspective.
- Lower MOPE and higher MUPE, i.e., more conservative.

Why Conservative?

Predictors learn that an over-predicted energy availability may trigger expensive quick-start units, so they prefer to be under-predicted.

	Mean Absolute Error (MAE)/MW	Root Mean Square Error (RMSE)/MW	Mean Over- Prediction Percentage Error (MOPE)	Mean Under- Prediction Percentage Error (MUPE)
Accuracy-Oriented Prediction	104	130	34%	6%
Cost-Oriented Prediction	123	149	21%	12%

Case on Large-Size 5655-Bus System

• Does the Lagrangian Algorithm Work?

Enables training acceleration without optimality loss, showing potential for large-size system.

Average Training Time/second		Average Optimality Gap		
Solving Empirical Risk Minimization Directly	Solving Empirical Risk Minimization with Lagrangian Algorithm	Solving Empirical Risk Minimization Directly	Solving Empirical Risk Minimization with Lagrangian Algorithm	
1604.2	930.2	0.65%	0.72%	

42% faster

High-quality solution

Feature-driven closed-loop predict-and-optimize performs well!

Can we make it better?

Approach 1: Feature-Driven C-PO

Approach 2:
Bilevel C-PO

Boosting
Power System
Operation Economics
via
Closed-Loop
Predict-and-Optimize
(C-PO)

Introduction

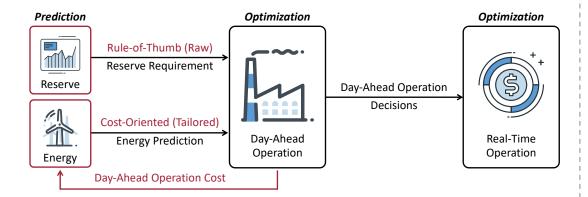
Approach 1: Feature-Driven C-PO

Approach 2: Bilevel C-PO

Summary

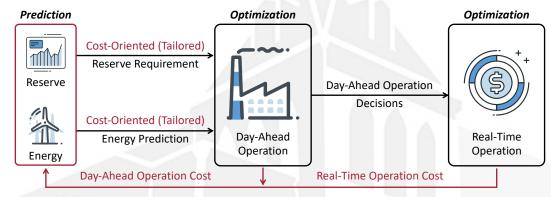
Feature-Driven C-PO vs Bilevel C-PO

Feature-Driven Closed-Loop Predict-and-Optimize (C-PO)



- Feed the day-ahead cost back
- Tailor energy prediction
- Single-level empirical risk minimization (ERM)

Bilevel Closed-Loop Predict-and-Optimize



- Feed the day-ahead and real-time costs back
- Jointly tailor energy prediction and reserve requirements
- Bilevel empirical risk minimization (ERM)

ERM Problem with Bilevel Mixed-Integer Programming Form

Previous Single-Level ERM

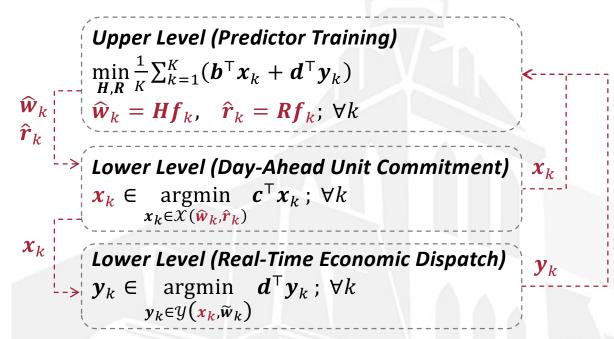
$$\min_{\boldsymbol{x},\boldsymbol{H}} \frac{1}{k} \sum_{k=1}^{K} \ell oss_{k}^{SPO}(\widehat{\boldsymbol{w}}_{k}, \widetilde{\boldsymbol{w}}_{k})$$

$$s. t. \widehat{\boldsymbol{w}}_{k} = \boldsymbol{H} \boldsymbol{f}_{k}; \ \forall k$$

$$\boldsymbol{x}_{k} \in \mathcal{X}(\widehat{\boldsymbol{w}}_{k}, \widehat{\boldsymbol{r}}); \ \forall k$$

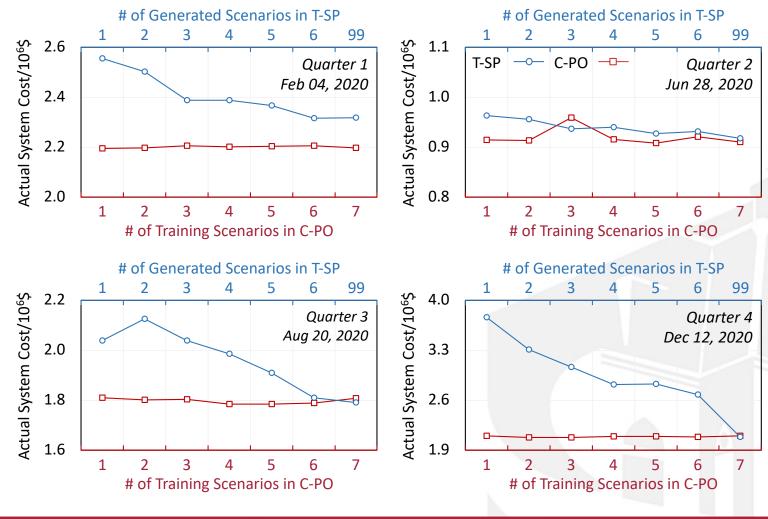
- Training and in-sample operations have to share the same objective.
- In-sample decisions x may NOT follow the least-cost principle, i.e., overfitting.

Upgraded Bilevel ERM



- The training and operations use their own objectives.
- More robust when scenarios are limited.

Case Study: C-PO vs Two-Stage Stochastic Programming (T-SP)



Observations

- C-PO is economically competitive
- C-PO needs fewer scenarios
- C-PO is more stable

Introduction

Boosting
Power System
Operation Economics
via
Closed-Loop
Predict-and-Optimize
(C-PO)

Approach 1: Feature-Driven C-PO

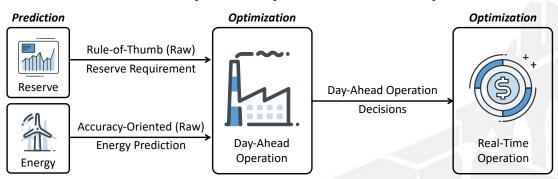
Approach 2: Bilevel C-PO

IV

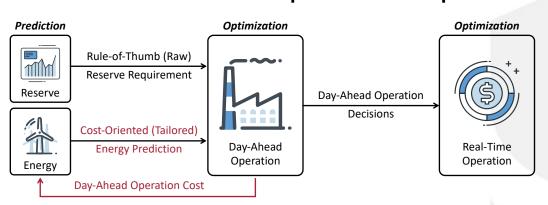
Summary

Two Approaches Towards Improving Operation Economics

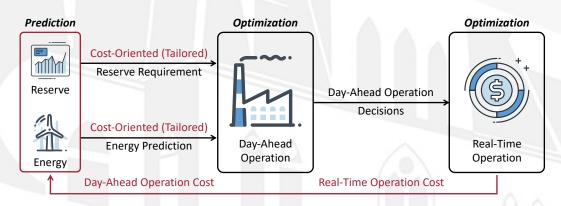
Traditional Open-Loop Predict-then-Optimize



Feature-Driven Closed-Loop Predict-and-Optimize



Bilevel Closed-Loop Predict-and-Optimize



• Conclusions

- o The C-PO shows potential in **improving the system operation economics** by generating **cost-oriented predictions tailored for system operations**.
- A cost-oriented energy prediction may be slightly worse in accuracy.
- The bilevel empirical risk minimization problem enables the C-PO to lower down the operation cost using limited scenarios.

- Back to Essence: Just an Idea
 Closed-loop predict-and-optimize is basically an idea that feeds the optimization back to the prediction for improving the optimization performance.
- Potential Tools to Realize This Idea
 Deep learning, reinforcement learning, and so on.
- References
- 1. Adam N. Elmachtoub and Paul Grigas, "Smart "Predict, then Optimize"," Management Science, 2022.
- 2. Xianbang Chen, Yafei Yang, Yikui Liu, Lei Wu, "Feature-Driven Economic Improvement for Network-Constrained Unit Commitment: A Closed-Loop Predict-and-Optimize Framework," *IEEE Transactions on Power Systems*, 2022.
- 3. Xianbang Chen, Yikui Liu, Lei Wu, "Towards Improving Operation Economics: A Bilevel MIP-Based Closed-Loop Predict-and-Optimize Framework for Prescribing Unit Commitment," arXiv:2208.13065, 2023.

Thank you!

For 2023 FERC Software Conference

xchen130@stevens.edu Lei.wu@stevens.edu