

Integrating Machine Learning and Operation Research for Improving Unit Commitment: A Closed-Loop Predict-and-Optimize Framework

Xianbang Chen, PhD Candidate
Stevens Institute of Technology
xchen130@stevens.edu

18th, December 2021

For OR Talk

Integrating
Machine Learning (ML)
and Operation
Research(OR) for
Unit Commitment (UC)

Presented Closed-Loop Predict-and-Optimize Framework

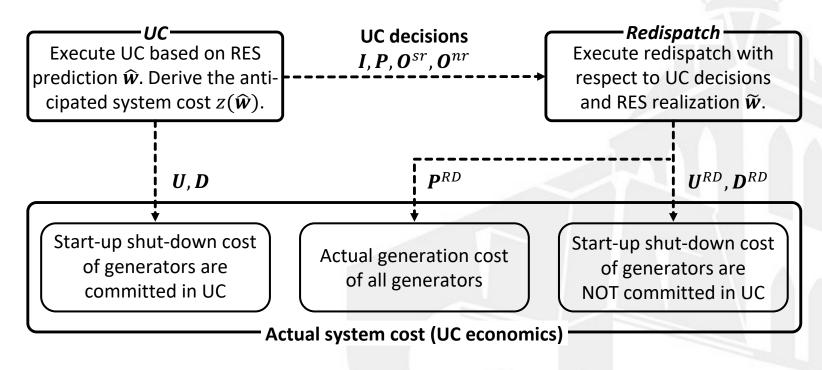
References and Q&A

- Preliminaries: UC Based on Mixed-Integer Linear Programming
 - **Objective** Minimizing operation costs including start-up and shut-down costs ($c^{T}x$), and generation cost $(d^{T}y)$.
 - **Unit constraints** Ramping limits; Generation limits;

System constraints Power balance; Network constraints;

 $Fy \leq \widehat{w}$ $\boldsymbol{x} \in \{0,1\}^M$

Binary decision $z(\widehat{w}) = \min_{x,y} [c^{\mathsf{T}}x + d^{\mathsf{T}}y] \rightarrow \text{Continue decision}$ $s.t. Ax + By \leq g$ Prediction vector of uncertainty Such as renewable energy source (RES)



- Preliminaries: Some Basic ML
 - Unsupervised learningK-means
 - Supervised learningKNN
- Linear regression
 Neural networks
 Decision trees
 Support vector machines
 - Reinforcement learningQ-learningDeep Q network

- Preliminaries: Goals for ML-based UC¹
- Improving UC economics
 - Improving UC reliability
 - Accelerating UC computation
 - o Enhancing UC models
- Predicting uncertainty (RES and load)

Preliminaries: Evaluation of UC Economics (Actual System Cost)

I Commitment

Set-point generation

PRD Actual generation

U Start-up

O^{sr} Spinning reserve

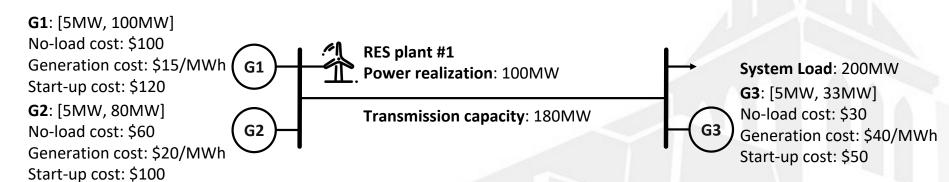
 \boldsymbol{U}^{RD} Start-up of quick generator

D Shut-down

 \boldsymbol{O}^{nr} Non-spinning reserve

 \mathbf{D}^{RD} Shut-down of quick generator

Motivations: Flaws in Traditional Open-Loop Predict-then-Optimize Framework


An open-loop predict-then-optimize (O-PO) framework for UC

Statistically more accurate prediction #> Higher UC economics

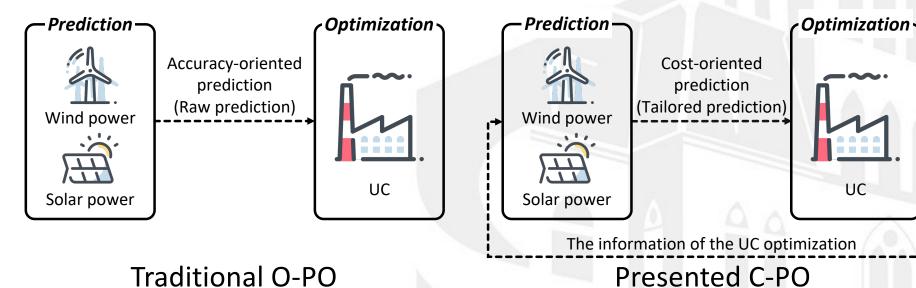
- Motivations: Flaws in Traditional Open-Loop Predict-then-Optimize Framework
 - A 2-Bus Example

- Prediction term
 RES power with 100MW realization
- Measurement of Prediction Quality
 Mean absolute error (Statistically)

- Motivations: Flaws in Traditional Open-Loop Predict-then-Optimize Framework
 - Case 1: Our method over-predicts and O-PO under-predicts

			Cas	e 1
	Method RES power prediction/MW Mean absolute error/MW G1 Set-point generation/MW Reserve/MW Set-point generation/MW Reserve/MW Set-point generation/MW Reserve/MW Set-point generation/MW Reserve/MW Dispatch of RES/MW Anticipated system cost/\$ Actual generation of G1/MW Actual generation of G2/MW Actual generation of G3/MW Actual utilized RES/MW Actual system cost/\$ "+": Ri-directional spinning reserved.	Our method	O-PO	
F	RES pow	ver prediction/MW	130	72
	Mean a	bsolute error/MW	30 (Worse)	28 (Better)
	G1	Set-point generation/MW	50	97
		Reserve/MW	±6	±4
UC	G2	Set-point generation/MW	OFF	11
UC		Reserve/MW	+40	±6
	G3	Set-point generation/MW	20	20
		Reserve/MW	±0	±10
		Dispatch of RES/MW	130 30 (Worse) 50 ±6 OFF +40 20 ±0 130 1,850 56 24 20 100 2,580 (Better)	72
	Anticipated system cost/\$		1,850	2,938
Da diamatah	Ac	tual generation of G1/MW	on/MW 30 (Worse) 2 or/MW 30 (Worse) 2 t generation/MW 50 50 eserve/MW ±6 50 t generation/MW OFF 6 eserve/MW ±40 20 eserve/MW ±0 20 eserve/MW 130 30 system cost/\$ 1,850 30 tion of G1/MW 56 30 tion of G2/MW 24 30 teed RES/MW 100 30	93
Re-dispatch	Ac	tual generation of G2/MW		5
	Actual generation of G3/MW		20	20
	Actual utilized RES/MW		100	82
	Actua	al system cost/\$	2,580 (Better)	2,754 (Worse)
		"±": Bi-directional spinning reserve	e. "+": Upward only non-spinni	ing reserve.

- Motivations: Flaws in Traditional Open-Loop Predict-then-Optimize Framework
 - **o** Case 2: Our method under-predicts and O-PO over-predicts


			Cas	e 1
		Method	Our method	O-PO
RES power prediction/MW			90	107
	Mean a	bsolute error/MW	10 (Worse)	7 (Better)
	G1	Set-point generation/MW	90	73
		Reserve/MW	±6	±0
UC	G2	Set-point generation/MW	OFF	OFF
UC		Reserve/MW	+40	+40
	G3	Set-point generation/MW	20	20
		Reserve/MW	±0	±6
		Dispatch of RES/MW	90	107
	A	Anticipated system cost/\$	Our method 90 10 (Worse) 90 ±6 OFF +40 20 ±0	2,195
Da diamatah	Ac	tual generation of G1/MW		73
ke-aispatch	-disnatch	tual generation of G2/MW	OFF	7
	Actual generation of G3/MW		20	20
	Actual utilized RES/MW		96	100
	Actual system cost/\$	al system cost/\$	2,360 (Better)	2,495 (Worse)

"±": Bi-directional spinning reserve. "+": Upward only non-spinning reserve.

- Motivations: Flaws in Traditional Open-Loop Predict-then-Optimize Framework

 - To improve the UC economics, we shall close the loop:
 Consider the downstream UC optimization when using ML for the upstream RES prediction.

Integrating
Machine Learning (ML)
and Operation
Research(OR) for
Unit Commitment (UC)

Presented Closed-Loop Predict-and-Optimize Framework

References and Q&A

- Features of the Closed-Loop Predict-and-Optimize (C-PO) Framework
 - Take advantage of available feature data. (Data-driven)
 - Ability to delivery cost-oriented RES predictions for improving UC economics.
 (Economics benefits)
 - Potential for large-scale MILP-based UC problems. (Practicality)
 - Extendable to prediction tasks in other fields. (Expansibility)

- Data-Driven C-PO Framework: Overview
 - Data-processing module
 - 1. Feature selection
 - 2. Selection of training scenarios
 - Cost-oriented modeling-and-training module
 - 1. Cost-oriented empirical risk minimization (ERM) problem modeling
 - 2. Cost-oriented ERM problem solving (Predictor training)
 - Closed-loop predict-and-optimize module
 - 1. Predict RES and optimize UC.

Data-Driven C-PO Framework: Data-Processing Module

Data-processing module

Feature selection based on historical scenarios in past years: Based on historical scenarios in past years, identify the most relevant feature types using standard regression coefficient.

Training scenarios selection from the latest historical scenarios: Among the latest historical scenarios, select the most representative scenarios as training scenarios using Wasserstein distance.

Standard regression

selection

coefficient for feature

 Wasserstein distance for training scenario selection

Goal

- *Feature selection:* Avoid overfitting and underfitting issues for the prediction model.
- **Selection of training scenarios:** Ensure the effectiveness of the prediction model on upcoming dispatch days.

- Data-Driven C-PO Framework: Cost-Oriented Modeling-and-Training Module
 - o **Smart "predict-then-optimize" (SPO) loss** $\ell^{SPO}(\widehat{w}, \widetilde{w}) := |z^*(\widehat{w}) z^*(\widetilde{w})|$ SPO: Measuring prediction quality with *UC cost loss* instead of **statistical accuracy loss**, so that the open-loop is closed.
 - Recalling the UC model

$$z(\widehat{\boldsymbol{w}}) = \min_{\boldsymbol{x}, \boldsymbol{y}} [\boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{d}^{\mathsf{T}} \boldsymbol{y}]$$

s. t. $A\boldsymbol{x} + B\boldsymbol{y} \leq \boldsymbol{g}$
 $F\boldsymbol{y} \leq \widehat{\boldsymbol{w}}, \boldsymbol{x} \in \{0,1\}^{M}$

 \circ Cost-oriented ERM problem of |S| scenarios

$$\min_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{H}} \frac{1}{|\mathcal{S}|} \sum_{S \in \mathcal{S}} [\ell_S^{SPO}(\widehat{\boldsymbol{w}}_S, \widetilde{\boldsymbol{w}}_S)] + \lambda \|\boldsymbol{H}\|_1$$

$$s.t. \ \boldsymbol{A}\boldsymbol{x}_S + \boldsymbol{B}\boldsymbol{y}_S \leq \boldsymbol{g}$$

$$\boldsymbol{F}\boldsymbol{y}_S \leq \boldsymbol{H}\boldsymbol{f}_S, \boldsymbol{x}_S \in \{0,1\}^M$$

Feature data such as raw RES predictions and regional load

- Data-Driven C-PO Framework: Cost-Oriented Modeling-and-Training Module
 - \circ Cost-oriented ERM problem of $|\mathcal{S}|$ scenarios Regression-based problem: H linearly maps feature $f_{\mathcal{S}}$ to RES predictions. Simple and interpretable.

$$\min_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{H}} \frac{1}{|\mathcal{S}|} \sum_{S \in \mathcal{S}} [\ell_S^{SPO}(\widehat{\boldsymbol{w}}_S, \widetilde{\boldsymbol{w}}_S)] + \lambda \|\boldsymbol{H}\|_1 \qquad \text{to be tuned}$$

$$s. t. \ \boldsymbol{A}\boldsymbol{x}_S + \boldsymbol{B}\boldsymbol{y}_S \leq \boldsymbol{g}$$

$$\boldsymbol{F}\boldsymbol{y}_S \leq \boldsymbol{H}\boldsymbol{f}_S, \boldsymbol{x}_S \in \{0,1\}^M$$

- Lagrangian-relaxation (LR) decomposition for solving the ERM
 Solving ERM is essentially training the predictors.
- Training result: Cost-oriented RES predictor tailored for UC.

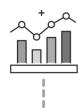
• Data-Driven C-PO Framework: Cost-Oriented Modeling-and-Training Module

Cost-oriented modeling-and-training module

Modeling cost-oriented ERM problem: Given the selected feature types of the training scenarios, model a cost-oriented ERM problem based on SPO loss function, which considers objective and constrains of UC.

Solving cost-oriented ERM problem: Solve the cost-oriented ERM problem using LR-based decomposition, so that a cost-oriented RES power prediction model can be trained.

Goal .


- *ERM problem modeling:* Feed the UC information (i.e., the induced costs, objective, and constraints) back to the ERM.
- *ERM problem solving:* Training a prediction model that can deliver cost-oriented RES predictions for UC.

- Modeling ERM based on SPO loss
- Solving ERM via LR-based decomposition
- Get a cost-oriented predictor for UC

Data-Driven C-PO Framework: Closed-Loop Predict-and-Optimize Module

· Closed-loop predict-and-optimize module -

Form feature-driven UC prescription model: Integrate the cost-oriented RES power prediction model and UC model to form a feature-driven UC prescription model for the upcoming dispatch days.

Closed-loop predict and optimize: In day-ahead stage of a dispatch day, input the selected feature types of this day to the prescription model for jointly executing costoriented RES prediction and UC optimization.

Goal

- *UC prescription model:* Build a UC prescription model that can perform closed-loop predict-and-optimize for UC.
- *Closed-loop predict and optimize:* Execute cost-oriented RES prediction and UC optimization simultaneously.

Data-driven UC prescription model:

$$z(f) = \min_{x,y} [c^{\top}x + d^{\top}y]$$

$$s.t. Ax + By \le g$$

$$Fy \le H^{*}f, x \in \{0,1\}^{M}$$

- Prescription: Combining prediction and decision.
- Regression property: H* f
 is essentially a weighted
 sum of the features f.

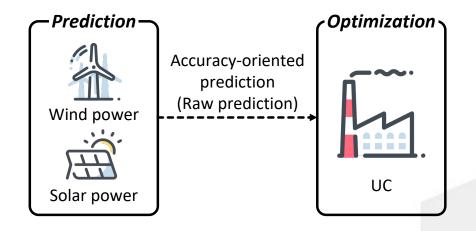
- Comparing Original UC Model and UC Prescription Model
 - Original UC model

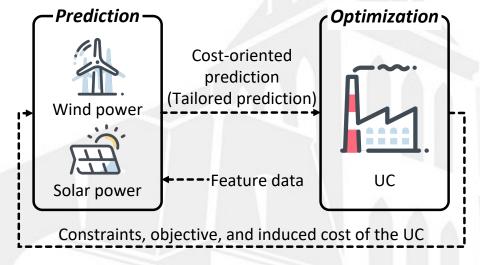
$$z(\widehat{\mathbf{w}}) = \min_{x,y} [\mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathbf{d}^{\mathsf{T}} \mathbf{y}]$$
s.t. $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} \leq \mathbf{g}$

$$\mathbf{F}\mathbf{y} \leq \widehat{\mathbf{w}}, \mathbf{x} \in \{0,1\}^{M}$$

- Predict-then-optimize
- Use accuracy-oriented prediction

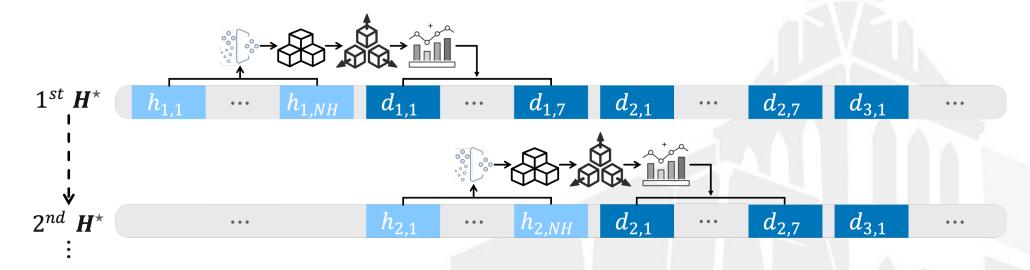
 The loop between RES prediction and UC optimization is wide-open

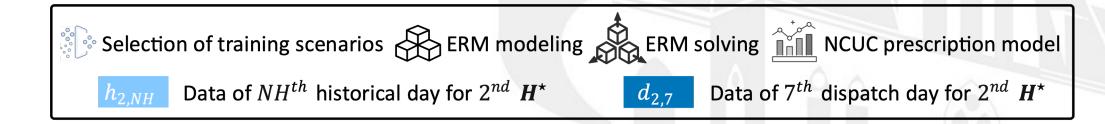

Data-driven UC prescription model


$$z(f) = \min_{x,y} [c^{\mathsf{T}}x + d^{\mathsf{T}}y]$$
s. t. $Ax + By \leq g$
 $Fy \leq H^*f, x \in \{0,1\}^M$

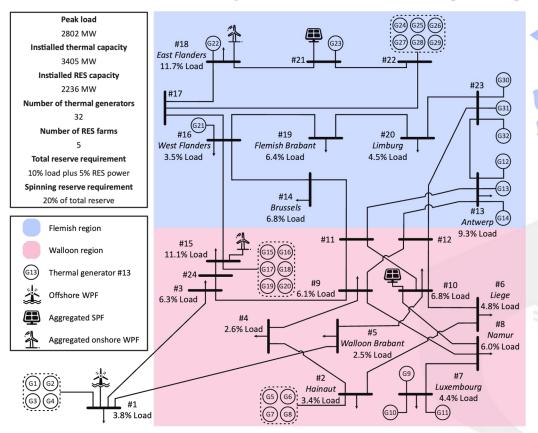
- Predict-and-optimize (Prescription)
- Use Cost-oriented prediction
 (Driven by feature data f)
- The loop between RES prediction and UC optimization is closed

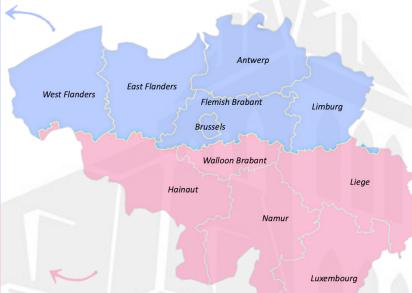
Comparing Traditional O-PO and Presented C-PO



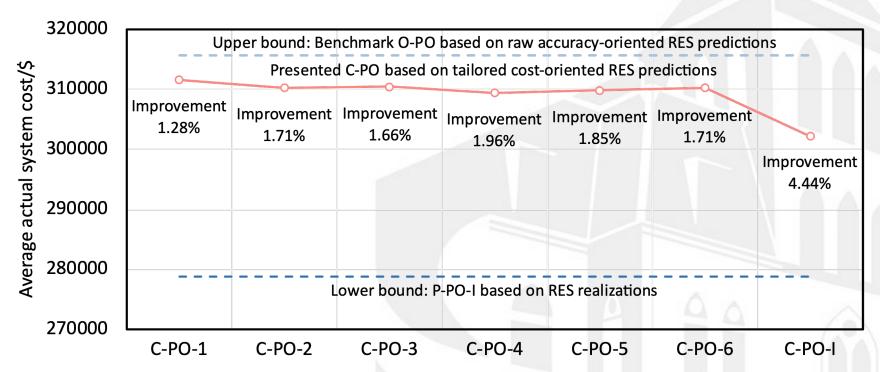

Traditional O-PO

Presented data-driven C-PO


Rolling-based C-PO Implementation for Daily UC



Cases on 24-Bus System: Simulating Belgian System



• Cases on 24-Bus System: Data from Belgian System³ (01/01/2018-12/31/2020)

- Cases on 24-Bus System: Results of Economics Improvements
 - C-PO enables noticeable economics improvements (1.28%-4.44%) over the daily UCs over entire 2020.

- Cases on 5655-Bus System: Whether LR-based Decomposition Works?
 - C-PO-LR computationally outperforms C-PO-SD without optimality loss.

Casa	Training time/s		Optimality gap	
Case	C-PO-SD	C-PO-LR	C-PO-SD	C-PO-LR
1	1273.6	593.2	0.32%	0.62% (4 Iterations)
2	1111.7	1029.2	0.59%	0.89% (3 Iterations)
3	1655.8	927.5	0.51%	0.69% (3 Iterations)
4	828.6	619.2	0.86%	0.64% (4 Iterations)
5	685.9	512.3	0.81%	0.69% (4 Iterations)
6	3686.1	1364.1	0.93%	0.77% (4 Iterations)
7	1581.5	1312.6	0.33%	0.35% (4 Iterations)
8	1803.8	1215.9	0.74%	0.99% (4 Iterations)
9	1266.1	1211.8	0.67%	0.17% (4 Iterations)
10	1140.8	1086.3	0.36%	0.73% (4 Iterations)
11	2632.4	1089.1	0.49%	0.82% (3 Iterations)
12	1462.7	1321.3	0.31%	0.76% (4 Iterations)
13	1436.4	834.7	0.72%	0.74% (4 Iterations)
14	1138.9	714.8	0.98%	0.89% (4 Iterations)
15	1810.2	767.6	0.87%	0.99% (4 Iterations)
16	2146.1	290.8	0.92%	0.88% (1 Iteration)

Conclusions

- The data-driven (or feature-driven) C-PO can improve UC economics by generating cost-oriented RES predictions tailored for UC.
- The LR-based decomposition method enables C-PO to be applicable to the practical system.
- From perspective of machine learning, the C-PO essentially utilizes the linear regression: simple yet effective.

Combining
Machine Learning (ML)
and Operation
Research(OR) for
Unit Commitment (UC)

Presented Closed-Loop Predict-and-Optimize Framework

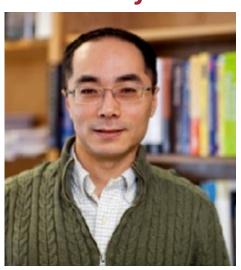
References and Q&A

References

- [1] Yafei Yang and Lei Wu, "Machine Learning Approaches to the Unit Commitment Problem: Current Trends, Emerging Challenges, and New Strategies," *The Electricity Journal*, 2020.
- [2] Xianbang Chen, Yafei Yang, Yikui Liu, and Lei Wu, "Feature-Driven Economic Improvement for Network-Constrained Unit Commitment: A Closed-loop Predict-and-optimize Framework," *IEEE Transactions on Power Systems*, 2021.
- [3] Dataset of Closed-loop Predict-and-Optimize NCUC. [Online]. Available: github.com/asxadf/Closed_Loop_NCUC_Dataset.

Open-Access Dataset and Codes

Our dataset and codes have been uploaded at [3], including RES, load, feature, and system data. Please feel free to use them.

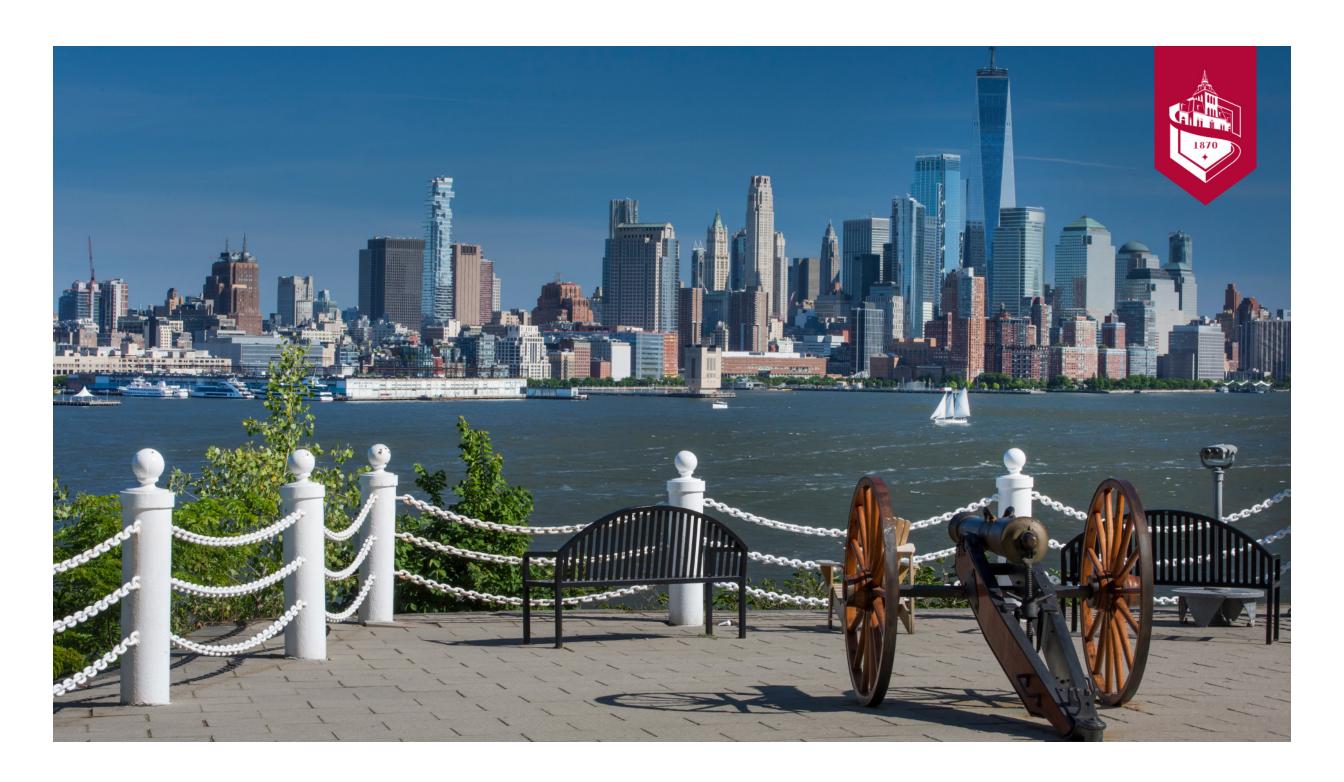


References and Q&A

Opening: Join Us!

Professor Lei Wu is looking for **highly motivated Post Doc and PhD students**. If you are interested in our research areas, please feel free to send your resume to Lei.Wu@stevens.edu

About Professor Lei Wu



- Professor in ECE Department at Stevens Institute of Technology
- Fellow of IEEE (Class of 2022)
- Research Focus: Applying mathematical optimization and machine learning on power system operation and planning.
- Group: 4 PhDs & 4 Post Doctors
- Homepage: https://sites.google.com/site/leiwupes

- About Stevens Institute of Technology
 - Nearby New York but quiet
 - Possess excellent views of Manhattan
 - Nice neighborhoods comfortable environment for living and studying
 - Solid environment for researching
 - Enjoy high security (Rank top 10 in USA)

